Constant Volume AHU Applications

CVAHU PRE-BUILT APPLICATION SERIES FOR THE BASCONTROL22 SERIES

What is the CvAHU Application Series?

The CvAHU series provides five pre-built control applications for air handlers (AHUs) that will execute on a Contemporary Controls' BAScontrol22 BACnet/IP Sedona controller. Pre-built applications speed up installation time by only requiring configuration during installation.

Equipment Summary						
Fan(s)	Sfan-Cv, PExh-Cv or Variable					
Cooling	DX-1 or 2 stage					
Heating	Elect/Gas – 1 or 2 stage					
Humidification	None					
Dehumidification	None					
Economizer	Dual Dry Bulb or Enthalpy					
Ventilation	Fixed% or DCV – CO2 sensor					

BAScontrol Series – Truly Open Controllers

- The BAScontrol series is Contemporary Controls' way of providing a truly open controller by having...
 - An open communications network in IP Ethernet
 - An open industry supported building automation protocol in **BACnet**
 - An open control language that is license-free in Sedona
 - A programming tool that is available to all without restriction in the Sedona Application Editor
 - Access to a Sedona community where there is a sharing of development, know-how and applications for the common good

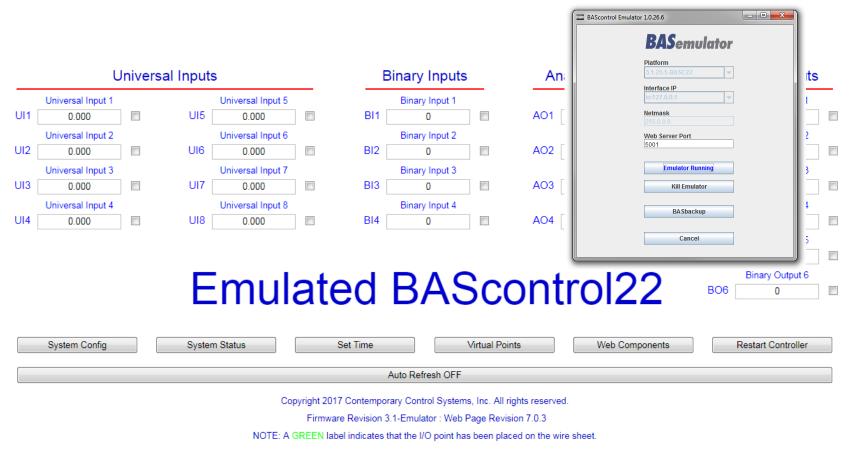
BAScontrol22 – BACnet/IP Sedona Controller

	UI5 UI6 UI7 UI8	A C A C A C A C A C BI1 BI2 BI3 BI4 BI1 BI2	HI COM CHASSIS LED Power 24 VDC:10% 4W 24 VAC:10% 6VA 47-63 Hz HI: DC+ or AC HI COM: DC COM or AC LO Class 2 Circuits Only
UI3	UI7 UI8	B13 B14	BAS control 22
A01	B01 B02	B05 B06	CONTEMPORARY
A03	B03	IP Default = 192.168.92.68/24 Ethe	ernet du un
	B04 B01 B02 B03 B04	Default = 192.168.92.68/24 Reset IP	ernet <u>D</u> <u>Link</u> <u>g Data</u> USED IND. CONT. EQ. 4EA4 C E US 4EA4

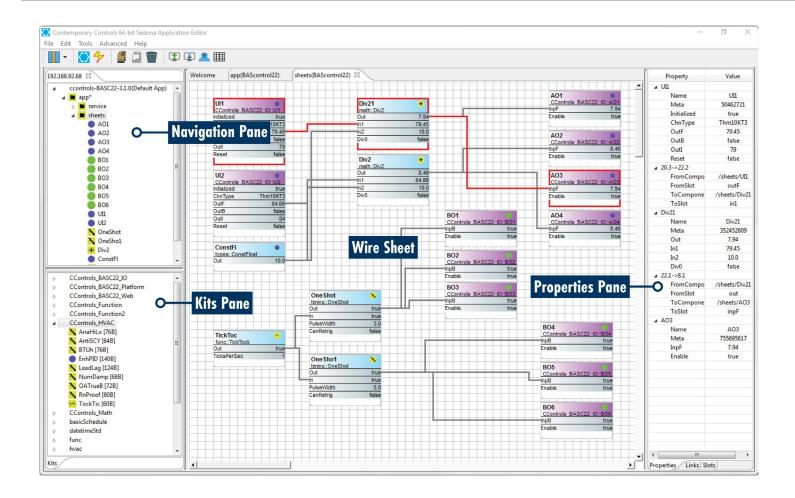
- Eight universal inputs
- Four binary inputs
- Four analog outputs
- Six binary outputs
- 24 virtual points
- 48 web components
- Dual Ethernet switch ports
- BACnet/IP B-ASC compatible
- Outdoor temperature range

By loading in a CvAHU version, this freely-programmable BAScontrol22 becomes an application-specific controller. Works with any BAScontrol22 model.

BAScontrol Toolset – All You Need is FREE


- BASemulator for controller emulation on a PC
- Sedona Applications Editor for function block programming
- BASbackup for BAScontrol project archiving

BAScontrol Toolset is available FREE via download from Contemporary Controls' web site. The toolset and a web browser are all you need to do a BAScontrol project even without having a real controller.



BASemulator – BAScontrol Emulation on a PC

- Very handy in learning Sedona and cloning real controllers
- Works on the same Windows
 PC as SAE and
 BASbackup
- Emulates all BAScontrol models

Sedona Application Editor (SAE)

To view or edit the Sedona function block program requires a Sedona tool such as Contemporary Controls SAE which is included in the FREE BAScontrol Toolset

BASbackup – Indispensable Project Tool

Restore Setup		×		
IP Address 10.0.3.86 Netmask 255.255.240.0 Gateway 10.0.0.1 DNS1	Configuration values in the values in the Main Configura recovery operation is perfor The recovery process gene uploaded to the controller. backup of the recovery dat the recovery process is con will be created.	tion file when a med. rates new files to be If you want to save a a, choose a file; when		
10.0.0.8		BASbackup		- 🗆 X
8.8.4.4		BAScontrol IP Address		D.4.6.
BACnet Device Instance BACnet Port		10.0.3.86	Delete IP	BASbackup
386 47808		Sedona Bundle	Unit Status	
BACnet Device Name		Component_Bundle_BASC_1.1.10	ONLINE	
BASC22 CVAHU3		Backup/Recovery File		
Recovery File Name		CvAHU2 BASC22 AHU2.zip		Choose File
	Choose File			
Restore Options		Backup		Restore
✓ Wire Sheet				
Main Configuration		Get SAX Data	Restart BAScontrol	Close
Veb Component Configuration				
Restore	[Close		

Pre-built applications are provided in a BASbackup compatible zip file. Once the application is loaded, possibly modified, and then configured, the resulting version can be completely backed up using BASbackup thereby providing a comprehensive archive of the project. The proven version can then be used in cloning additional controllers only requiring a modification to individual IP addresses and BACnet device instances.

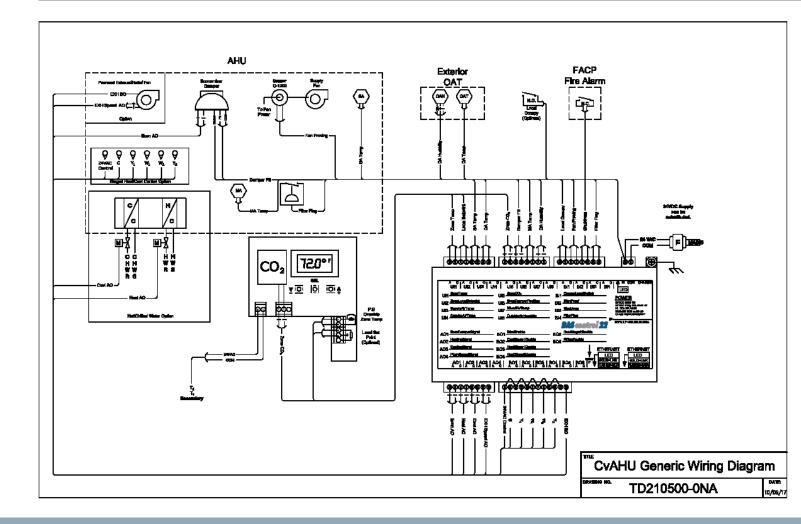
Application Version Contents in one Zip File

- Application Notes A Word document that provides specific comments regarding implementation
- System Schematic A .pdf file that identifies the air-flow and location of the sensors and actuators required to implement the sequence
- Points List An Excel file that identifies all real, virtual and web points along with BACnet names and properties
- Sequence of Operation A Word document that logs the sequence with references to BACnet and Sedona points along with recommended set points and settings
- Wiring Diagram A .pdf file that provides a generic wiring diagram to assist the panel builder in wiring the controller and ancillary equipment
- Application Program A BASbackup .zip file bundles the Sedona Application along with all configuration data to replicate the application version

CvAHU Package Includes Everything for the SI

BASc22 CvAHU2 Applic Notes
 BASc22 CvAHU2 Points List
 BASc22 CvAHU2 Seq of Ops
 BASc22R_CvAHU2_Backup
 CvAHU Generic Wiring Diagram
 CvAHU2 System Schematic RevA

Microsoft Word Document Microsoft Excel Worksheet Rich Text Format Compressed (zipped) Folder Adobe Acrobat Document Adobe Acrobat Document


Application packages are free to the system integrator, but registration is required.

Sequence of Operation (SOO) in Word

- Sequence of Operation
 - OPERATING MODES: CvAHU2 shall have the following modes of operation:
 - BAS OCCUPIED NORMAL USE: The BAS network shall have an hourly schedule for zone /space occupancy (VT01). The following items shall occur when the system is operating in occupied mode:
 - LOCAL SETPOINTS: Zone temperature setpoint slider (UI2) shall have a span of 65°F to 75°F with a 5°F (adj. WC02) deadband. Cooling setpoint shall have a minimum 69°F (adj. WC15) limit. Heating setpoint shall have a maximum 73°F (adj. WC14) limit.
 - NETWORK SETPOINTS: If a local setpoint slider is not installed the Network Occupied heating and cooling setpoints shall automatically be utilized. Network setpoints shall be 75°F Cooling (adj. VT03) and 70°F Heating (adj. VT04).

As a Word document, the SOO can be modified to address the specifics of the project. Real, virtual and web Sedona points are referenced in the document.

Wiring Diagram – Generic that can be Edited

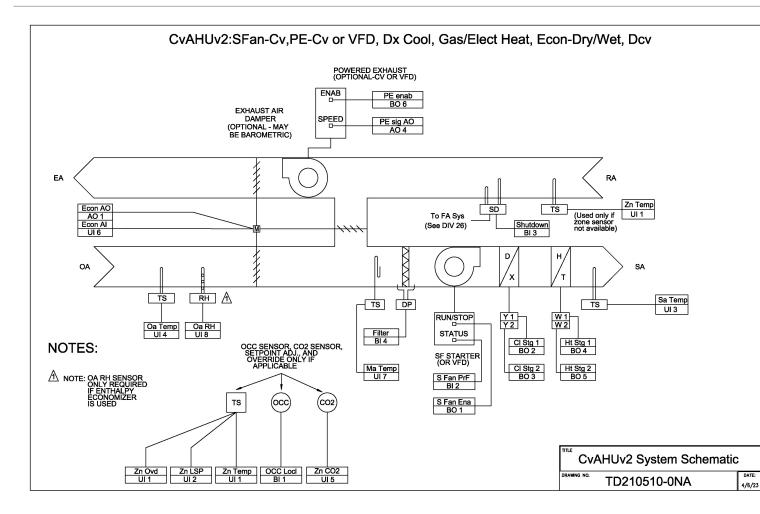
To assist the panel builder in designing a panel, a generic wiring diagram is provided in .pdf format showing the interconnections between the controller and recommended ancillary equipment.

Device List – Selection Recommendations

Device	Part Number	Manufacturer	Notes
BAS Control 22 - w/relay Outputs	BASC-22R	Contemporary Controls	
Wall Setter 10kT3 w/10kohm setpoint slider & override	AQW-AAACBF1	Senva	Alt: Senva TR (non-display) series See Senva catalog for AQW options
Wall Setter same as above but with built-in CO2 sensor	AQW-ABACBF1	Senva	Alt: separate 0-10v CO2 sensor See Senva catalog for AQW options
Status "Go-No Go" CT	C1200	Senva	Alt: Veris H300 See Senva catalog for other CT options
24V SPST Relay	VMB1B-F24	Veris	Use if isolation relays are required
RIB Relay	V100	Veris	For PE / Relief fan option if needed
12" 10K T3 probe	TFEHR00	Veris	duct flange mount included
10K T3 OAT sensor	TOHR00	Veris	½" NPT mount
12' 10K T3 averaging sensor	TAHH0	Veris	use with larger RTUs
Small Actuator 90deg 2-10v sig, 2-10v pos	LMB-24SR	Belimo	"SR" type required for 0-10v
Larger Actuator 2-10v with 2-10v feedback	LF24-SR-S-US	Belimo	Larger with spring return
Dry Diff Psi switch2 to 2.0" wc	ADPS-03-2-N	Dwyer	For filter status
Occupancy sensor – wall switch type	MSCD1000	Veris	See Veris catalog for other options

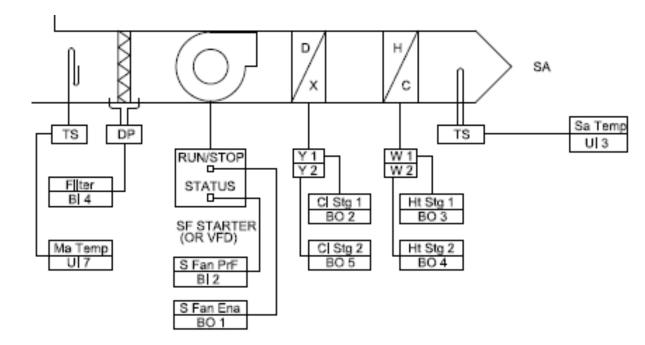
Depending upon the application version selected, some ancillary equipment is required that can be found on this recommended device list. Substitutions are possible.

Intended for Skilled Professionals

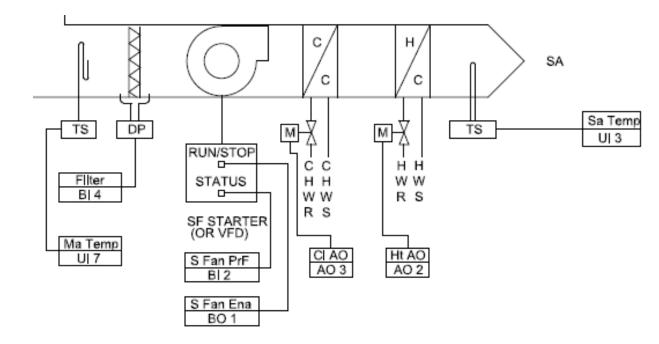

<u>The Generic CvAHU application packages are free to systems</u> <u>integrators and controls contractors who register with Contemporary</u> <u>Controls attesting that they are skilled in implementing HVAC</u> <u>sequences in programmable controllers and understand that the</u> <u>sequences are provided as-is and that Contemporary Controls makes</u> <u>no guarantee that the sequences are suitable for any AHU application.</u> <u>The responsibility for suitability rests with the systems integrator or</u> <u>controls contractor.</u>

CvAHU Selection Guide – Identifying Features

CvAHU Version	Power Exhaust (Rfan)	Cooling	Heating	Economizer	Vent
1	CV or Variable	0-10VDC AO	0-10VDC AO	DBulb or Enthalpy	Fixed% or CO2
2	CV or Variable	2-stage DO	2 stage DO	DBulb or Enthalpy	Fixed% or CO2
3	CV or Variable	2-stage DO	2 stage DO	DBulb or Enthalpy	Fixed%
4	None	2-stage DO	2 stage DO	DBulb or Enthalpy	Fixed%
5	None	2-stage DO or 0-10VDC AO	2-stage DO or 0-10VDC AO	None	None

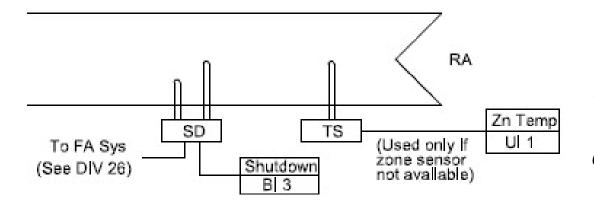

There are five versions in the pre-built Constant Volume AHU series addressing a mix of AHU features, such as staged versus analog heating/cooling, fixed ventilation versus demand control, dry-bulb or enthalpy economizer, powered or unpowered exhaust. The controls contractor selects the version that best addresses the project needs with the understanding that all versions can be modified to suit. Each version is available by download as one zipped file.

CvAHU2 – Dual-Stage Heating/Cooling

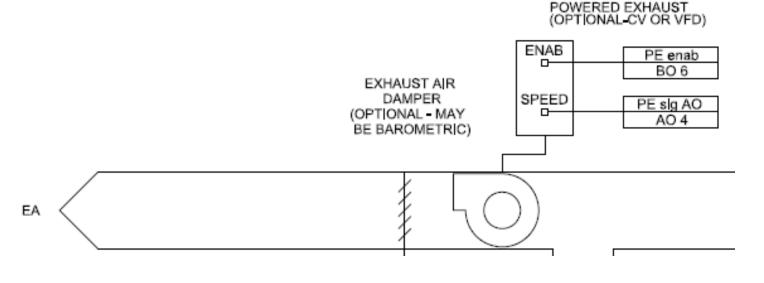

With each version program you get a system schematic that can be modified to meet the specific needs of the project. Each version is identified by a version suffix, such as CvAHU2.

Supply Air – Staged Heating/Cooling

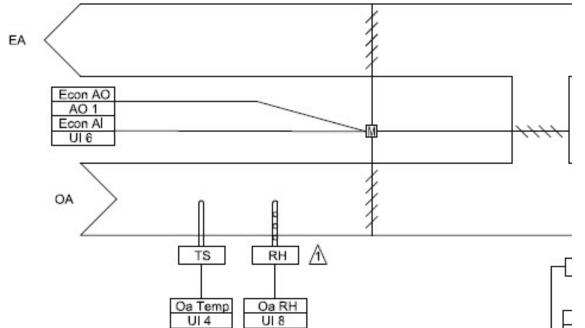
For staged heating and cooling you have the choice of one or two stages of direct expansion (DX) cooling and one or two stages of gas or electric heating. Temperature sensors (TS) exist for supply air and mixed air ducts. A differential pressure (DP) switch checks for a plugged filter. The constant volume supply air fan (S fan) has a run-proving signal from a current transformer in addition to start and stop commands. If a variable frequency drive (VFD) is used for soft starting, it is assumed to be set for a single running speed.


Supply Air – Analog Heating/Cooling

It is also possible to have 0-10 Volt analog control for chilled water (CHW) cooling and hot water (HW) heating. All other sensors remain the same as for staged heating and cooling.

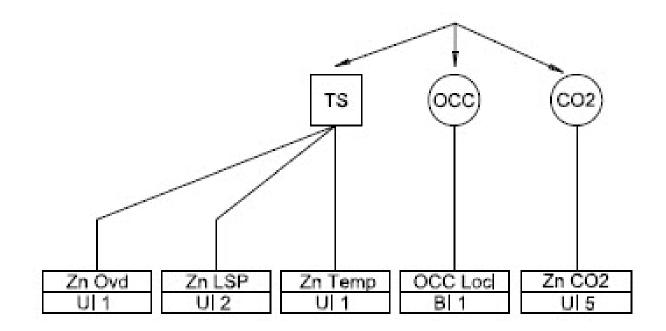

Notice that each point has both the Sedona variable name and the I/O channel reference used on the Sedona wiresheet.

Return Air – With Shutdown Provision


For return air, you have a provision for a return air temperature sensor (TS) that can be in the return air duct, or you can use a space temperature sensor that is mounted in the wall setter. A shutdown provision such as a smoke detector (SD) is provided to meet local fire code requirements.

Exhaust – Powered or Unpowered

For the exhaust duct, you can have a constant volume exhaust fan, a variable speed exhaust fan or no fan at all. The exhaust damper could be a simple barometric damper. Variable speed exhaust fan is based upon outside air damper position rather than building static pressure input.


Outside Air – Economizers and Ventilation

You can also have a dry-bulb economizer requiring an outside air temperature sensor (TS), an enthalpy economizer requiring a relative humidity sensor (RH) in addition to the dry-bulb sensor or no economizer at all. A proportional damper actuator must be provided which has analog position feedback.

- For ventilation, you can have a fixed amount of ventilation or have a variable amount of
- ventilation based upon CO2 or what is called demand control ventilation (DCV).

Operational Inputs

A wall setter is optional. If no slider switch (ZnLSP) is discovered for setpoint control, then the program assumes BACnet client control of the setpoint. However, a space temperature sensor (ZnTemp) is needed which could be located in the zone or in the return air duct. By momentarily shorting out the zone temperature sensor, a momentary occupied (ZnOvd) signal is created. *Optionally, a continuous local occupy* command (OCC) can be obtained by the OCC input (OCCLocl). Finally, if demand control ventilation (DCA) is required then a CO2 sensor needs to be installed (ZnCO2).

Real Points List – BACnet Client Accessible

	I/O	Configured	Sedona		BACn	et Objec	t
ZnTemp CControls BASC22 IO::UI1	Point	as	Тад	Instance	e Name	Туре	Comments
nitialized true	UI1	10k T3	ZnTemp	1	ZoneTemp	AI	Space temperature thermistor
ChnType Thm10KT3	UI2	Resistance	ZnLSP	2	ZoneLocalSetpoint	AI	Two-wire potentiometer
DutF 72.37 DutB false	UI3	10k T3	SaTemp	3	SupplyAirTemp	AI	Supply air thermistor
Dutl 72	UI4	10k T3	OaTemp	4	OutsideAirTemp	AI	Outside air thermistor
Reset false	UI5	0-10V	ZnCO2	5	ZoneCO2	AI	0-2000 ppm CO2 transmitter
	UI6	0-10V	EconAl	6	EconDamperPosition	AI	OA damper position feedback
	UI7	10k T3	MaTemp	7	MixedAirTemp	AI	Mixed air thermistor
	UI8	0-10V	OaRH	8	OutsideAirHumidity	AI	Outside air humidity
	BI1	contact	OccLocl	9	OccupyLocalSwitch	BI	Temporary occupancy switch
	BI2	contact	SfanPrf	10	SfanProof	BI	Supply air fan proving sensor
	BI3	contact	Shutdwn	11	Shutdown	BI	Shutdown occurs if open
EconAO CControls BASC22 IO::AO1	BI4	contact	Filter	12	FilterFlag	BI	Filter requires changing
npF 10.0	A01	0-10V	EconAO	13	EconDamperSignal	AO	OA damper command signal
nable true	AO2	0-10V	HtAO	14	HeatAnalogOutput	AO	Heating analog output
	AO3	0-10V	CIAO	15	CoolAnalogOutput	AO	Cooling analog output
	AO4	0-10V	PEsigAO	16	PExhSpeedSignal	AO	Powered exhaust speed cmd.
	BO1	contact	SfanEna	17	SfanEnable	BO	Engage supply fan
	BO2	contact	CIStg1	18	CoolStage1Enable	BO	Engage stage 1 cooling
	BO3	contact	HtStg1	19	HeatStage1Enable	BO	Engage stage 1 heating
	BO4	contact	HtStg2	20	HeatStage2Enable	BO	Engage stage 2 heating
	BO5	contact	CIStg2	21	CoolStage2Enable	BO	Engage stage 2 cooling
	BO6	contact	PEenab	22	PEfanEnable	BO	Engage powered exhaust

A Real points list is provided for each application version. Universal inputs (UI) are pre-configured and assigned both a Sedona name and a BACnet name. BACnet instances are fixed but BACnet names, types, descriptions and present values can be changed if needed. A comment field is provided to aid in understanding the significance of the point.

Real Points View – Main Web Page

All 22 real points with their present value and BACnet name are displayed. Buttons launch to other pages.

Virtual Points List – BACnet Client Accessible

		Point	ć
OccNet		101110	,
CControls BASC22 Initialized	IO::VT01 true	VT01	WS
ChnType	BinaryInput	VT02	WS
Reset	false		
FloatV	1.0	VT03	WS
BinaryV	true	VT04	WS
WireSheet	InputTo	VT05	
		VT06	
		VT07	WS
		VT08	WS
		VT09	
		VT10	
		VT11	
		VT12	
ModeNet CControls BASC22	10::VT14	VT13	
Initialized	true	VT14	WS c
ChnType	FloatOutput		W3 C
Reset	false		
FloatV	1.0		
BinaryV	false		
WireSheet	OutputFrom		

	I/O	Configured	Sedona		BACne	et Obje	: Object		
	Point	as	Тад	Instan	ce Name [·]	Туре	Comments		
I	VT01	WS input	OccNet	201	OccupyViaNetwork	BV	Network occupy command		
	VT02	WS input	OvdTime	202	OccupyOvrdDuration	AV	Net. Occ. override time (min)		
	VT03	WS input	OccCISP	203	OccCoolingSetpoint	AV	Occupied cooling setpoint		
	VT04	WS input	OccHtSP	204	OccHeatingSetpoint	AV	Occupied heating setpoint		
	VT05			205					
	VT06			206					
	VT07	WS input	EcoMin	207	EconMinPosSetpoint	AV	OA damper minimum position		
	VT08	WS input	Co2NSP	208	CO2_SP_ViaNetwork	AV	Network supplied CO2 setpoint		
	VT09			209					
	VT10			210					
	VT11			211					
	VT12			212					
	VT13			213					
	VT14	WS output	ModeNet	214	ModeEnumStatus	AV	"0" = Standby "1" = Ventilation "2" = Heating "3" = Cooling "4" = Filter "5" = Emergency Off		

BACnet commands from a BACnet client appear to the wiresheet (WS) as inputs. The BACnet instance numbers are pre-defined as are the Sedona tags. Wiresheet outputs appear as BACnet client inputs.

Virtual Points List – BACnet Client Accessible

	I/O	Configured	Sedona		BACne	t Obje	ct
	Point	as	Тад	Instand	ce Name T	уре	Comments
OatBInd CControls BASC22 IO::VT15 Initialized true ChnType FloatOutput Reset false	VT15	WS output	OatBInd	215	OA_TrueBlend	AV	Percentage of outside air based upon SA, MA and OA temperatures
FloatV 72.0 BinaryV false WireSheet OutputFrom	VT16	WS output	EffHtSP	216	EffectHeatingSetpoint	AV	Reflects the current heating setpoint
	VT17	WS output	EffCISP	217	EffectCoolingSetpoint	AV	Reflects the current cooling setpoint
	VT18	WS output	HtNDem	218	HeatingDemand	AV	Heating demand from 0-100%
D	VT19	WS output	CINDem	219	CoolingDemand	AV	Cooling demand from 0-100%
EconPos CControls BASC22 IO::VT20 nitialized true	VT20	·	EconPos	220	EconDmprEffPos	AV	Outside damper position
ChnType FloatOutput	VT21			221			
Reset false FloatV 100.0	VT22			222			
BinaryV false	VT23			223			
WireSheet OutputFrom	VT24	WS input	Hrtbeat	224	HeartbeatFromBAS	BV	Wink from BAS for fallback

There are 24 available virtual points providing communication between a BACnet client and a Sedona wiresheet.

Virtual Points View – Virtual Points Web Page

Virtual Points						
OccupyViaNetwork VT01 0	VT09 0	VT17 72.500				
VT02 120.000	VT10 0	HeatingDemand VT18 0.000				
VT03 75.000	VT11 1.982	VT19 0.000				
VT04 70.000	VT12 0.099	VT20 0.000				
VT05 80.000	VT13 0.000	VT21 10.000				
VT06 55.000	VT14 5.000	VT22spare VT22 0.000				
VT07 5.000	VT15 0.000	VT23 1				
VT08 200.000 0	VT16 EffectHeatSetpoint C	VT24 0				

The present value of all 24 virtual points are displayed along with their BACnet name.

Web Components – Used for Configuration

MinVal	2.0
MaxVal	10.0
FltVal	5.0
IntVal	5
BinVal	true
FanMode	•
CControls BASC22	Web::WC03
WcType	Input
MinVal	0.0
MaxVal	1.0
FltVal	1.0
IntVal	1
BinVal	true
Dirivar	uue

CControls BASC22 Web::WC02

Input

HCdeadb

WcType

	Web Point	Web Name	Sedona Tag	I/O	Default Value	Comments	
	WC01	ReservedForTesting	TestVal	I	0	Set to "1" to test the occupy logic. Currently not used as part of the logic.	Mich company and (M/C)
	WC02	HeatCoolDeadbandSP	HCdeadb	I	5	Forced difference between the local and network heating and cooling setpoints.	Web components (WC) provide
	WC03	FanAutoOnModeSelect	FanMode	I	1	When set to "0" the supply fan is in automatic mode. With a "1" the supply fan runs continuously while in occupied mode.	communication between the Sedona
	WC04	DcvMaxEconDmprLimit	Co2Max	I	60	The sets the maximum throttling range of the CO@ PID controller. Maximum setting is 100%.	wiresheet and a common web browser
	WC05	SAT_HighLimitSP	SaHiLim	I	160	Supply air temperature high limit. Min=0; Max=200	allowing the browser
	WC06	SAT_LowLimitSP	SaLoLim	I	25	Supply air temperature low limit. Min=0; Max=100	to set local parameters and monitor points of
	WC07	OAT_DX_Lockout	ClLoLoc	I	55	If outside air temperature drops below this setting, cooling will be locked out until the outside air temperature rises 2 degrees F above this setting.	interest.
	WC08	OAT_HeatLockout	HtHiLoc	I	68	If outside air temperature rises above this setting, heating will be locked out until the outside air temperature drops 2 degrees F below this setting.	

Web Points View – Web Components Page 1

Web Components						
<prev< th=""><th></th><th></th><th></th><th></th><th>NEXT></th></prev<>					NEXT>	
	Description	Value	Wire Sheet	Min	Max	
WC01	ReservedForTesting	0.000000	Input	0.000000	100.000000	
WC02	WC02spare	0.000000	Input	0.000000	100.000000	
WC03	FanAutoOnSelect	1.000000	Input	0.000000	1.000000	
WC04	DcvMaxEconDmprLimit	60.00000	Input	10.000000	100.000000	
WC05	SAT_HiLimitSP	160.000000	Input	100.000000	180.000000	
WC06	SAT_LolimitSP	35.000000	Input	35.000000	55.000000	
WC07	OAT_DX_Lockout	55.000000	Input	50.00000	65.000000	
WC08	OAT_Heat_Lockout	68.000000	Input	60.000000	80.000000	

48 web components are available with their descriptions and present values.

Web Components – Used for Configuration

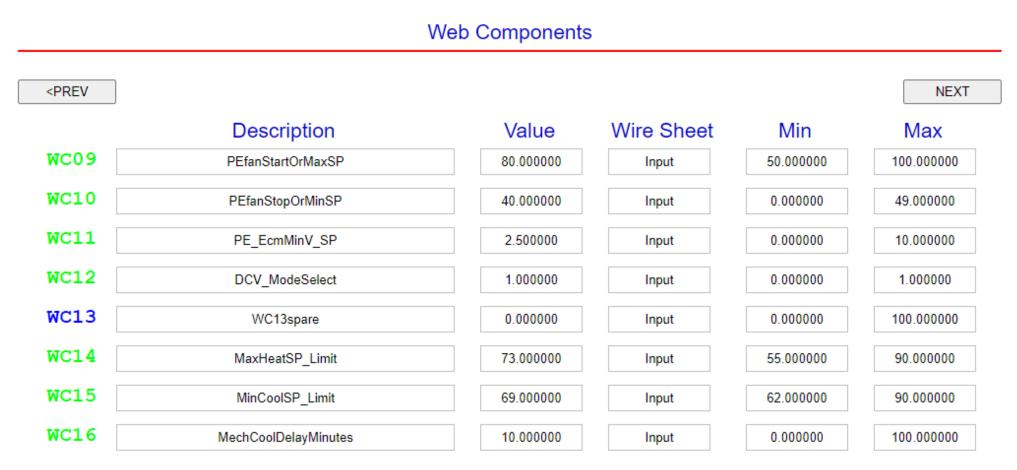
UnoHtSP

WcType MinVal

MaxVal FltVal IntVal BinVal

HtMaxSP

WcType MinVal MaxVal FltVal IntVal BinVal


CControls BASC22

true

CControls BASC22

	Web Point	Web Name	Sedona Tag	I/O	Default Value	Comments	
	WC09	PEfanStartOrMaxSP	PEStart	1	80	If a powered exhaust is being used and the exhaust damper position (percentage open) exceeds this setting, the exhaust fan will turn on. If a variable speed drive is being used, its speed will throttle between the two damper position limits.	The web name appears on the web components web page. The Sedona tag is pre-defined as
Web::WC13 Input 50.0	WC10	PEfanStopOrMinSP	PEStop	I	40	If a powered exhaust is being used and is running and the exhaust damper position becomes less than this setting, the exhaust fan will turn off.	well as the characteristic of the point — input or
80.0 55.0 55 true	WC11 WC12	PE_EcmMinV_SP	PEminSP	I	2.5	Low-limit of the 0-10V powered exhaust signal	output. A comment field helps in understanding the
	WC13	UnocHeatingSetpoint	UnoHtSP	- I	55	Unoccupied heating setpoint	significance of the
Web::WC14 Input	WC14	MaxHeatSP_Limit	HtMaxSP	I	73	Maximum heating setpoint allowed.	point.
55.0 90.0	WC15	MinCoolSP_Limit	ClMinSP	I	69	Minimum cooling setpoint allowed.	·
73.0	WC16	UnocCoolingSetpoint	UnoCISP	I	85	Unoccupied cooling setpoint	

Web Points View – Web Components Page 2

Minimum and maximum values can be established to restrict the entries into a defined range.

Web Components – Used for Configuration

	Web Point	Web Name	Sedona Tag	I/O	Default Value	Comments	Th
EconSel CControls BASC22 Web::WC20 WcType Input	WC17	CmprMinRunMinutes	RunTim1	I	1	Minimum running time in minutes when a compressor is engaged.	(
MinVal 0.0 MaxVal 1.0 FitVal 0.0	WC18	CmprMinOffMinutes	OffTim1	I	3	Minimum running time in minutes when a compressor is disengaged.	ava int
IntVal 0 BinVal false	WC19	EconEnthalpySetpoint	EnthSP	I	30	Above this setpoint economizer operation is disabled.	V
	WC20	EconDryWetBulbSelect	EconSel	I	0	"0"=Dry Bulb, "1"=Enthalpy & Dry Bulb	SU
MatLoSP <u>CControls BASC22 Web::WC21</u> WcType Input MinVal 40.0	WC21 WC22- WC48	MixedAirLowLimitSP	MatLoSP	I	45	MAT low limit setpoint typ. 45°F	tl
MaxVal 55.0 FitVal 45.0 IntVal 45							

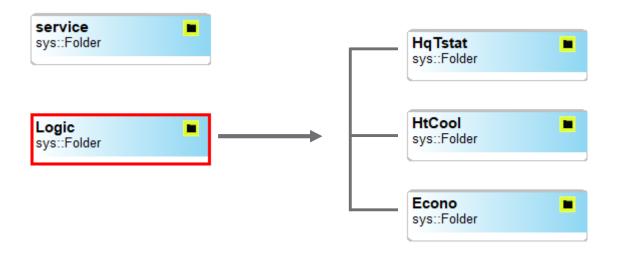
BinVal

true

There are a total of 48 web components available. Binary, integer and float variables are supported with the same web component.

Web Points View – Web Components Page 3

	Web Components					
<prev< th=""><th></th><th></th><th></th><th></th><th>NEXT</th></prev<>					NEXT	
	Description	Value	Wire Sheet	Min	Max	
WC17	CmprMinRunMinutes	1.000000	Input	1.000000	5.000000	
WC18	CmprMinOffMinutes	3.000000	Input	2.000000	5.000000	
WC19	EconEnthalpySetpoint	26.00000	Input	21.000000	29.000000	
WC20	EconDryWetBulbSel	0.000000	Input	0.000000	1.000000	
WC21	MixedAirLowLimitSP	45.000000	Input	40.000000	55.000000	
WC22	EconDualSingleModeSel	0.000000	Input	0.000000	1.000000	
WC23	EconDryBulbSetpoint	72.000000	Input	65.000000	75.000000	
WC24	EconActuatorMinVolts	2.000000	Input	0.000000	2.000000	

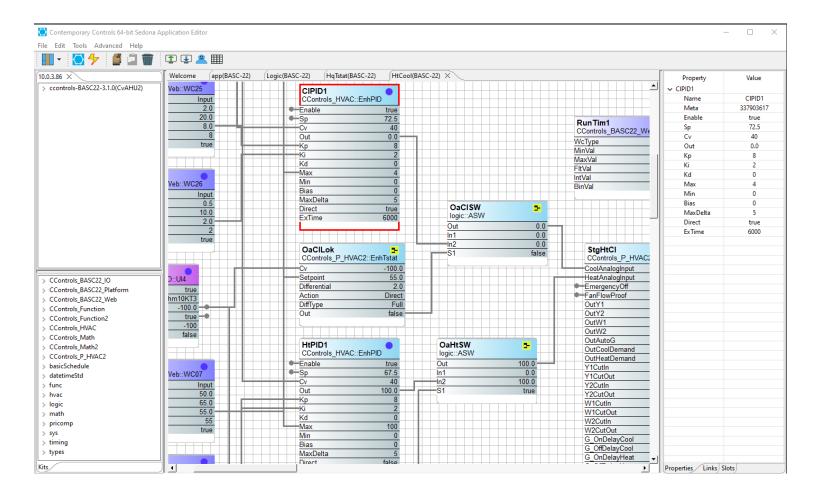

Local configuration of economizer is accomplished via webpage.

Web Points View – Web Components Page 4

	Web Components					
PREV					NEXT	
	Description	Value	Wire Sheet	Min	Max	
WC25	CoolPidKpSetpoint	8.000000	Input	2.000000	20.000000	
WC26	CoolPidKiSetpoint	2.000000	Input	0.500000	10.000000	
WC27	HeatPidKpSetpoint	8.000000	Input	2.000000	20.000000	
WC28	HeatPidKiSetpoint	2.000000	Input	0.500000	10.000000	
WC29	EconPidKpSetpoint	6.000000	Input	2.000000	20.000000	
WC30	EconPidKiSetpoint	2.000000	Input	0.500000	10.000000	
WC31	LocalSP_HiResistance	10000.000000	Input	800.000000	10800.000000	
WC32	Default Web Component 32	0.000000	Input	0.000000	100.000000	

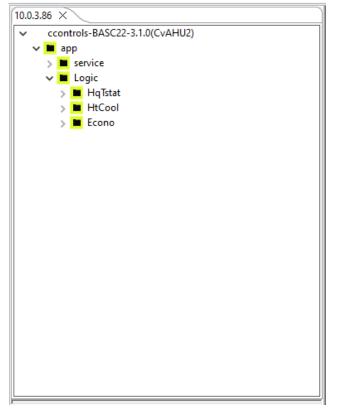
Both heating and cooling PID Kp and Ki parameters can be adjusted via webpage.

Sedona Application is in a Hierarchy of Folders


HqTstat – Headquarters thermostat provides setpoint and setback logic

HtCool – provides staged and analog heating and cooling logic

Econo – provides both dry-bulb and enthalpy economizer plus demand control ventilation logic


The main wiresheet has only two folders – service and Logic. Drilling down the Logic folder gains you access to the functional folders of the CvAHU version that is loaded.

HtCool Folder – Heating/Cooling Logic

Logic exists in the three folders found in the "Logic" folder. The logic in the folders will change somewhat depending upon what version is being used but the intent is to maintain as much commonality as possible to help in understanding the applications.

SAE Views – Navigation and Kits Panes

The Navigation pane shows you the hierarchy of the folders. Expanding the folders will show the order of execution of the logic.

> CControls_BASC22_IO	
> CControls_BASC22_Platform	
> CControls_BASC22_Web	
> CControls_Function	
> CControls_Function2	
> CControls_HVAC	
> CControls_Math	
> CControls_Math2	
> CControls_P_HVAC2	
> basicSchedule	
> datetimeStd	
> func	
> hvac	
> logic	
> math	
> pricomp	
> sys	
> timing	
> types	
Kits	
~	

The Kits pane shows you all the kits installed on the controller. Expanding a kit gains you access to the components within the kit.

SAE – Properties Pane

Cool(BASC-22) ×			Property StgHtCl	Value
			Name	StgHtCl
			Meta	774832129
OaCISV		StgHtCl 🕂	CoolAnalogInput	0.0
logic::AS	W	CControls_P_HVAC2::StgHtCl	HeatAnalogInput	100.0
Out	0.0	CoolAnalogInput 0.		true
In1	0.0	HeatAnalogInput 100.		false
In2	0.0	EmergencyOff Shutdow	- Outri	false
S1	false	FanFlowProof Standby		false
		OutY1 fals		false
		OutY2 fals		false
		OutW1 fals	- UUTAUTOU	false
		OutW2 false	OutCoolDemand	0.0
		OutAutoG fals OutCoolDemand 0.	OutHeatDemand	0.0
		OutCoolDemand 0.		40.0
		Y1Cutin 40.	V1CutOut	5.0
		Y1CutOut 5.		98.0
		Y2Cutin 98.		60.0
		Y2CutOut 60.		40.0
OaHtSW		W1CutIn 40.		5.0
logic::ASW	(00.0	W1CutOut 5.		98.0
Out	100.0	W2CutIn 98.	0 W2CutOut	50.0
<u>In1</u> In2	0.0	W2CutOut 50.	0 G_OnDelayCool	10.0
S1	true	G_OnDelayCool 10.0	0 G_OffDelayCool	30.0
	liue	G_OffDelayCool 30.		3.0
		G_OnDelayHeat 3.		45.0
		G_OffDelayHeat 45.		

By highlighting a component, its properties can be viewed in the Properties pane. This is where properties can be changed. Any changes are temporary until the application is saved to the controller.

Custom Components Simplify Logic

PsychrE	#	AntiSCY	N	OATrueB	N	RnProof	N (
CControls Function::Psyc	chrE	CControls HVAC	::AntiSCY	CControls HVAC:	:OATrueB	CControls HVA	D::RnProof
InTempDegF	0.0	MinRunTime	1	ExeDelay	1	ProofDelay	
InRelativeHumidityPct	0.0	MinOffTime	1	OffCal	0.0	In	fals
OutDewPointDegF	0.0	In	false	OutsideAT	0.0	Proof	false
OutEnthalpyBtu_per_lb	0.0	Out	false	ReturnAT	0.0	Out	fals
OutSatPressure_psi	0.0	Reset	false	MixedAT	0.0	OutNot	tru
OutVaporPressure_psi	0.0			Output	0.0	Fail	fals
OutWetBulbTempDegF	0.0			Fault	true	Faillnhibit	fals

Psychrometric component provides enthalpy calculation for economizer operation.

Anti-cycle component is used to protect staged compressors against short-cycling during cooling operation.

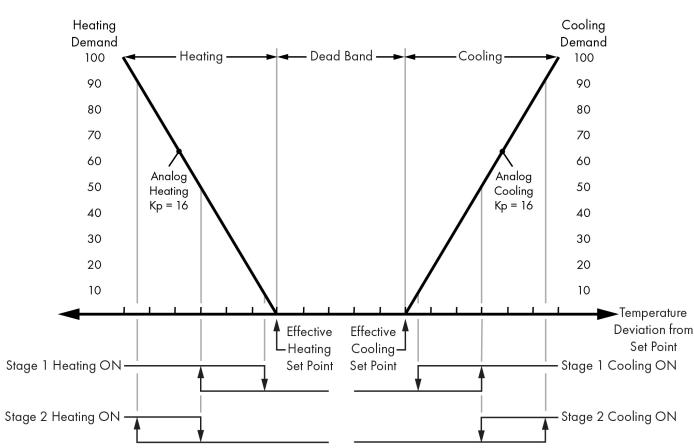
Outside-air true-blend component determines the actual percentage of outside-air injected based upon outside-air, mixed-air and return-air temperatures and not damper position.

Run-proving component verifies that commanded motors remain running as commanded.

Macro Components Reduce Wiresheet Complexity

Staged Heat Cool combines one or two-stage heating/cooling binary outputs, supply fan stop/start control, fan proof protection, buffered analog outputs, and emergency shutdown.

Wall Setter manages inputs from either digital or analog type wall setters which provides space temperature, setpoint, humidity, and CO2 control.

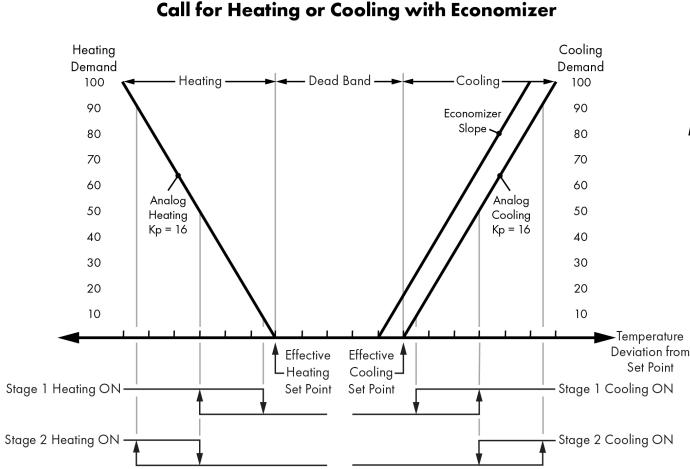

Economizer-English Units is a comprehensive "virtual" airside economizer with configuration options that include single or dual dry-bulb, single or dual enthalpy, demand control ventilation (DCV), powered exhaust fan, and a Purge mode.

StgHtCl	井논
CControls_Macro::Sto	gHtCl
CoolAnalogInput	0.0
HeatAnalogInput	0.0
EmergencyOff	Normal
FanFlowProof	Standby
OutY1	false
OutY2	false
OutW1	false
OutW2	false
OutAutoG	false
OutCoolDemand	0.0
OutHeatDemand	0.0
Y1CutIn	50.0
Y1CutOut	5.0
Y2CutIn	95.0
Y2CutOut	55.0
W1CutIn	50.0
W1CutOut	5.0
W2CutIn	95.0
W2CutOut	55.0
G_OnDelayCool	15.0
G_OffDelayCool	30.0
G_OnDelayHeat	5.0
G_OffDelayHeat	45.0

WallSet	井
CControls_Macro::WallSet	
OccupyStatus	Unoccupied
SetpointOhms	0.0
ZoneTempTherm	0.0
ZoneTempVolts	0.0
HumidityVolts	0.0
CO2_Volts	0.0
OutEffCoolingSP	85.0
OutEffHeatingSP	55.0
OutTemperature	0.0
OutHumidity	0.0
OutCO2ppm	0.0
OutOccOvrd	Standby
OutUnocCooling	Off
OutUnocHeating	On
UnocCoolingSP	85.0
OccCoolingSP	75.0
OccHeatingSP	70.0
UnocHeatingSP	55.0
CoolSPminLimit	70.0
HeatSPmaxLimit	72.0
SP_PotInMin	0.0
SP_PotInMax	10000.0
SP_PotOutMin	65.0
SP_PotOutMax	75.0
LocalSP_Deadband	5.0
LocalOvrdDurationMinutes	120.0
CO2_OutMax	2000.0
ZoneTempV_OutMin	50.0
ZoneTempV_OutMax ZnTempTorV_Select	95.0
OccupiedSP_Select	UseSP Pot
OccupiedSP_Select	USeSP_POL

EconoE CControls_P_HVAC2::Ec	onoE
	Unoccupied
SfanStatus	Standby
ReturnTemp	0.0
ReturnHumidity	0.0
ReturnCO2ppm	0.0
MixedTemp	0.0
OutsideTemp	0.0
OutsideHumidity	0.0
EffectiveCoolingSP	0.0
RetDamperPosVolts	0.0
OutDamperPosVolts	0.0
PurgeCommand	Standby
OutEconoDamperV	2.0
OutRetDmprEffPos	0.0
OutOA_DmprEffPos	0.0
OutOA_TrueBlend	0.0
OutRA_Enthalpy	0.0
OutOA_Enthalpy	0.0
OutOA_Dewpoint	0.0
EconCoolingDemand	0.0
DCV_CO2_Demand	0.0
MechCoolingEnab	Enable
ExhFanEnab	Standby
DryWetModeSelect	Dry bulb
FixedDiffModeSelectDiffer	
DCV_ModeSelect Use	
MinVentPosSP	10.0
MaxDCV_PosSP	50.0
DCV_CO2_Setpoint	1000.0
DryBulbLimitSP	72.0
EnthalpyLimitSP	26.0
MA_LowLimitSP	40.0
ActuatorMinVolts	2.0
MechCoolDelayMinutes	5.0
ExFanCutInSP	80.0
ExFanCutOutSP	40.0
EconPID_Kp	6.0
EconPID_Ki	1.5
CO2_PID_Kp	2.0
CO2_PID_Ki	0.5

Staged or Analog Heating/Cooling Control


Call for Heating or Cooling

Heating and cooling control utilize two enhanced PID components along with hysteresis and timer components. PID parameters can be changed as well as the hysteresis trip points and timer delays.

-	
HtPID1	HVAC::EnhPID
Enable	true
Sp	67.51
Cv	72.5
Out	0.0
Кр	16
Ki	4
Kd	0
Max	100
Min	0
Bias	0
MaxDelta	5
Direct	false
ExTime	6000

CIPID1	•
CControls	HVAC::EnhPID
Enable	true
Sp	72.51
Cv	72.5
Out	0.0
Кр	16
Ki	4
Kd	0
Max	100
Min	0
Bias	0
MaxDelta	5
Direct	true
ExTime	6000

Heating/Cooling with Economizer

Economizers add an early stage of freecooling assuming the outside temperature (dry-bulb) or outside humidity (dry-bulb and relative humidity) are conducive to free-cooling. An additional PID component and the economizer component are used for economizing.

EconPID	•
CControls	HVAC::EnhPID
Enable	true
Sp	71.51
Cv	72.48
Out	100.0
Кр	8
Ki	2
Kd	0
Max	100
Min	3
Bias	0
MaxDelta	5
Direct	true
ExTime	15000

Commissioning – Configuration Web Page

IP Configuration IP Mode Static IP IP Address 10.0.3.86 Netmask 255.255.240.0 Gateway 10.0.0.1 Primary DNS 10.0.0.8 Secondary DNS 8.8.4.4

BACnet Device Configuration

Device Object Name	BASC22-CvAHU2		
Device Instance	386		
UDP Port	47808		
BBMD IP Address	0.0.0.0		
BBMD Reg Time	100		

Enable Protocol BACnet/IP Sedona FTP Authentication User Name admin Password

To commission a controller using one of the CvAHU versions, you must use BASbackup to restore the version to the known IP address of the target controller. Both IP configuration and BACnet device configuration is required. DNS settings are necessary if access to a time server is done by name. BACnet device object and device instance must be unique.

Commissioning – Configuring System Time

System Time				NTP	Configuration		
Year	2023				NTP Enabled		
Month	April	~		NTP Server	130.14	9.17.21	
Day	21	~		Time Zone	Central:UTC-6		
Hour	1 PM	~	NTP R	NTP Refresh (Days)	ays) 1		
Minute	53	~			NTP Succ	ess	
	Manual Time Set			DST	Configurat	ion	
					DST Enabled		
					DSTON	DST OFF	
				Month	March 🗸	Novembe 🗸	
			I	Day of Month	2nd SUN 🗸	1st SUN 🗸	
				Hour	2 AM 🗸	2 AM 🗸	

System time can be set manually or automatically when there is Internet access to a network time protocol (NTP) server. The time zone must be set, and daylight-saving time (DST) dates must be entered. In the event of a power loss, system time is maintained for up for several days.

Once the application is functioning on the controller, use BASbackup to save the controller settings as a project backup which will save all your configuration settings plus the Sedona application.

BAScontrol Applications Documentation

Detailed information on Sedona component and kit descriptions, basic Sedona programming, using Sedona and BASbackup tools, as well as using the prebuilt applications can be found on the Contemporary Controls web site.

CvAHU Applied to CC's Rooftop Laboratory

Contemporary Controls outfitted four dual-stage heating/cooling RTUs with economizers on the roof of the company's Downers Grove, IL facility with CvAHU2 programs. All units are scheduled using a variety of head-ends for testing purposes. Our rooftop is our outside laboratory experiencing the variability of Chicago weather.

Thank You